Probabilistic graph-coloring in bipartite and split graphs
نویسندگان
چکیده
منابع مشابه
Probabilistic graph-coloring in bipartite and split graphs
We revisit in this paper the stochastic model for minimum graph-coloring introduced in (C. Murat and V. Th. Paschos, On the probabilistic minimum coloring and minimum k-coloring, Discrete Applied Mathematics 154, 2006), and study the underlying combinatorial optimization problem (called probabilistic coloring) in bipartite and split graphs. We show that the obvious 2-coloring of any connected b...
متن کاملProbabilistic Coloring of Bipartite and Split Graphs
We revisit in this paper the probabilistic coloring problem ( ) and focus ourselves on bipartite and split graphs. We first give some general properties dealing with the optimal solution. We then show that the unique 2-coloring achieves approximation ratio 2 in bipartite graphs under any system of vertex-probabilities and propose a polynomial algorithm achieving tight appro...
متن کاملOn sum edge-coloring of regular, bipartite and split graphs
An edge-coloring of a graph G with natural numbers is called a sum edge-coloring if the colors of edges incident to any vertex of G are distinct and the sum of the colors of the edges of G is minimum. The edge-chromatic sum of a graph G is the sum of the colors of edges in a sum edge-coloring of G. It is known that the problem of finding the edge-chromatic sum of an r-regular (r ≥ 3) graph is N...
متن کاملEdge-Coloring Bipartite Graphs
Given a bipartite graph G with n nodes, m edges and maximum degree ∆, we find an edge coloring for G using ∆ colors in time T +O(m log ∆), where T is the time needed to find a perfect matching in a k-regular bipartite graph with O(m) edges and k ≤ ∆. Together with best known bounds for T this implies an O(m log ∆ + m ∆ log m ∆ log ∆) edge-coloring algorithm which improves on the O(m log ∆+ m ∆ ...
متن کاملEdge Coloring Bipartite Graphs Eeciently
The chromatic index of a bipartite graph equals the maximal degree of its vertices. The straightforward way to compute the corresponding edge coloring using colors, requires O((2 n 3=2) time. We will show that a simple divide & conquer algorithm only requires O((3=2 n 3=2) time. This algorithm uses an algorithm for perfect k-matching in regular bipartite graphs as a sub-routine. We will show th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Optimization
سال: 2007
ISSN: 1382-6905,1573-2886
DOI: 10.1007/s10878-007-9112-2